Abstract: In this paper, a new user-friendly platform for robust observer design is presented. The aim of this software is to render the process of observer design as simple as possible for process practitioners and researchers involved in control or supervision tasks. The platform is dedicated to laboratory scale processes in which key variables are not directly measured and therefore need to be estimated. Moreover, model mismatches and uncertainties can be potentially recovered. The tool can also be used to analyze the feasibility of the related inverse problem for a given choice of the sensors, the sampling time, the observation window, etc. making it a precious tool to design the instrumentation of the process. A particularly useful feature for researchers is the possibility to automatically generate a MATLAB S-function that may be connected to the user's own control/diagnosis modules to perform the estimation task. The software is intended to be freely available (by simple request) for research and educational purposes by mid 2010.

Keywords: Software Sensor; Moving-Horizon Observer; User-Friendly; Nonlinear Systems; Optimization.

1. INTRODUCTION

Chemical and biological processes are generally characterized by highly nonlinear dynamics that involve badly known parameters. They also suffer from the lack of sensors making the use of state observers mandatory.

While many analytic observer design methods are conceptually available for nonlinear systems (Gauthier et al. [1992], Slotine et al. [1987]), the need for structural properties that have to be satisfied by the system model tremendously reduces the class of systems to which analytic observers can be applied.

On the contrary, optimization-based observers (Michalska and Mayne [1995], Alamir [1999]) that reconstruct the state by minimizing output prediction error related cost are particularly suitable as they enable complex modeling as well as state constraint handling.

The French National Research project ANR-CLPP has been initiated based on the observation according to which, many process researchers, when dealing with their own works on the control, the supervision and/or the optimal design of their processes, are quite frequently faced with the problem of observer design. For non specialists, this task is cumbersome because analytic observers rarely apply while optimization-based approaches need some technicalities that may be time-consuming and difficult to master.

The ANR-CLPP project ambition is to offer a user-friendly tool that renders these difficulties transparent for the process researchers that can therefore focus on their own research effort. This paper describes this tool which is intended to be freely available to academic research groups by mid 2010, namely, the official term of the ANR-CLPP project.

This paper is organized as follows: First, the heart of the estimation algorithm is briefly described in section 2. A
typical working session is then detailed in section 3 in order
to describe the basic features of the software. This is done
using the example of a waste-water treatment process.

2. THEORETICAL BACKGROUND

CLPP addresses systems that are governed by an Ordinary
Differential Equation (ODE) of the form:

\[
\dot{x} = f(x, u, w) \quad (x, u, w) \in \mathbb{R}^n \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_w} \quad (1)
\]

\[
y = h(x, u, w) \quad y \in \mathbb{R}^{n_y} \quad (2)
\]

where \(x\) is the state vector, \(u\) is the vector of measured
inputs, \(w\) is the vector of unmeasured disturbances while \(y\)
is the measured output. In order to perform the estimation
task, CLPP uses moving-horizon strategy (Michalska and
Mayne [1995]) in which the measurements collected during
the past observation horizon \([t - T, t]\) (where \(t\) is the
current time while \(T\) is called the observation horizon)
are used to recover the value of the unknown variables.
The latter are the state \(x_0 = x(T - T)\) at the beginning of
the observation horizon and the disturbance/uncertainty
profile \(w(\cdot)\) over \([t - T, t]\). In order to define a finite
dimensional optimization problem, the user has to provide a
parametrization map:

\[
[x_0, w(\tau)] = \text{param}(p, \tau) \quad \text{for all } \tau \in [t - T, t] \quad (3)
\]

that gives a finite dimensional parametrization of the un-
knowns. Typically, the first \(n\) components of \(p\) are used
to represent the unknown states while the remaining com-
ponents are used to describe the temporal evolution of
\(w\) over \([t - T, t]\). To cite just an example, for ramp-like
temporal profiles of \(w\), \(2 \cdot n_w\) components may be used
to describe the evolution of \(w(\cdot)\) over \([t - T, t]\). Note also
that discontinuous profile can also be used in which the
switching instants may be used as unknown parameter,
etc. See (Alamir [2008b]) for more details.

Based on the measurements that are acquired during the
time interval \([t - T, t]\), an optimization problem can be
defined in the decision variable \(p\). The cost function rep-
resents the difference between the predicted output and the
effectively measured values. More precisely:

\[
J^{(t)}(p) := \sum_{i=1}^{n_p} \left[\sum_{k \in K_i(t)} |y_i(t_k) - y^p_i(t_k|p)|^2 \right] \quad (4)
\]

where \(K_i(t)\) are indices of instants \(t_k \in [t - T, t]\) where a
measurement of the component \(y_i\) is available. The reason
for this rather non standard definition is that in real con-
text, the rates of acquisition of the different measurements
are never the same. \(y^p_i(t_k|p)\) is the predicted output based
on the initial state and the disturbance profile given by
the parameter vector \(p\) through (3).

During each observer updating period \([\tau_j, \tau_{j+1}]\) (where
\(\tau_j = j \cdot \tau_0\), a finite number \(q\) of function evaluations
are allowed in order to look for a minimum of the cost
function \(J^{(\tau_j)}(\cdot)\) starting from an initial guess \(p^*(\tau_{j-1})\)
that is compatible with the past estimate \(p(\tau_{j-1})\) leading
to the following updating process for the dynamic variable
\(p\):

\[
p(\tau_j) := S^q\left(p^+(\tau_{j-1})\right) \quad (5)
\]

where \(S\) denotes an iteration of some optimization al-
gorithm and \(S^q\) denotes successive iterations of \(S\)
that involves \(q\) function evaluations. In its current version, CLPP
already implements several Gradient-free direct search al-
gorithms (Simplex, Toreszon, etc.). Such algorithms enable
non smooth inverse problems to be tackled, avoid asking
the user to provide analytical gradient or the numerical
troubles associated to the computation of the sensitivity
matrices.

Using the current value \(p(\tau_j)\) in (3) gives the current esti-
mates \(\hat{x}(\tau_j - T|p(\tau_j))\) as well as the uncertainty profiles
\(\hat{w}(\cdot|p(\tau_j))\) on \([\tau_j - T, \tau_j]\) which gives the estimation \(\hat{x}(\tau_j)\)
by integrating the system model (1).

Note that the cost function (4) is generally non convex
and the problem of avoiding local minima is crucial. In
order to enhance global convergence of the iterations, CLPP
implements the singularity avoidance technique proposed in
(Alamir [2008a], Alamir et al. [2009]). Briefly speaking,
this technique involves iterations that switch between
certain cost functions defined by:

\[
J^{(t)}_\sigma(p) := \sum_{i=1}^{n_p} \left[\sum_{k \in K_i(t)} \phi_\sigma(t_k) \cdot |y_i(t_k) - y^p_i(t_k|p)|^2 \right] \quad (6)
\]

where \(\{\phi_\sigma(\cdot)\}_{i \in \{1, \ldots, n_\sigma\}}\) is a family of weighting profiles.
The rationale behind this is that for all \(\sigma\) and in the
absence of measurement noise, the global solution is shared
by all the resulting cost functions. This makes it possible
to define an iterative scheme that exploits this property in
order to avoid potential accidental singularities.

3. A TYPICAL WORKING SESSION

In this section, a typical working session on CLPP is de-
scribed in order to better understand the steps leading to
the observer construction. The problem of the simultane-
ous estimation of the state and the model parameters of
an activated sludge (Gomez-Quintero et al. [2000]) is used
as a support for illustration. It is needless to say that due
to the lack of space, only a very brief presentation of the
problem can be proposed here in order to concentrate on
the software presentation.

Note that CLPP is a tool that generates model-based ob-
servation algorithm. Therefore, having a dynamic model
of the process is a precondition to the use of CLPP. The
reduced model proposed in (Gomez-Quintero et al. [2000])
for the activated sludge process takes the following form:

\[
\dot{x} = f(x, u, w) \quad (x, u, w) \in \mathbb{R}^4 \times \mathbb{R}^6 \times \mathbb{R}^4 \quad (7)
\]

\[
y = h(x, u, w) = (x_2, x_4) \quad (8)
\]

where \(x = (S_S, S_{NO_3}, S_{NH_4}, S_{O_2})\) in which \(S_S\) is the
biodegradable substrate concentration, \(S_{NO_3}\) is the nitrate
concentration, \(S_{NH_4}\) is the ammonia concentration while
\(S_{O_2}\) is the dissolved oxygen. The vector of inputs \(u\) gathers
many flow-rates and concentration related information
while the uncertainty vector \(w\) contains the unknown
model parameters that have to be identified on line. Only
S_{NO_3} and S_{O_2} are measured leading to the measurement vector y. It is worth noting that the above model is an oversimplified model that has been precisely derived for estimation purposes.

A typical CLPP working session comprises the following steps:

1. Definition of the problem dimensions: n, n_u, n_w and n_y.
2. Definition of the system’s ODE’s.
3. Definition of the sensors physical laws.
4. Definition of the parametrization map param invoked in (3).
5. Definition of the input profiles.
6. Simulation of the so obtained model. This steps enables the user to check whether the dynamic system is well defined by inspecting the state, output and disturbance profiles for a given parameter vector p.
7. Definition of the observer’s related issues such as the observation horizon (T), the optimizer (S), the number of function evaluations (q) and the number of weighting profiles (n_ϕ).

Figure 1 shows a schematic view of the CLPP environment. The dialog box that is shown enables the problem’s dimensions to be defined as well as the set of ODE’s governing the system dynamics. The latter can be defined by clicking on the differential equation button of the System dialog-box (Figure 1). The window shown in Figure 2 is then opened and the user can enter the C code of the ODE’s in the body of the head-predefined function. Figure 2 shows the ODE’s in the case of the activated sludge example (7). Note that the lower window in Figure 2 is devoted to any dependencies and/or constant declarations that may be needed in the computation of the ODE’s.

Once the ODE’s are defined, the output laws can be entered through the definition of the sensor blocks. Clicking on each sensor block (see Figure 1) opens a definition window such as the one shown in Figure 3. Here again, clicking on the Physical Output law button opens an edition window in which a head-predefined C code of the corresponding $h_i(x, u, w)$ can be inserted together with the conversion rate and the acquisition rate that may be sensor dependent.

The parametrization map param can be defined by clicking on the $\Pi(p)$ button (see Figure 1). This opens the small window depicted in Figure 4 in which the user first defines
Fig. 3. Dialog-Box enabling the first output sensor to be defined. Clicking on the Physical Output law button opens a edition window in which a C code of $h_1(x, u, w)$ can be inserted.

Fig. 4. Dialog-Box enabling the parametrization map param [see equation (3)] the minimum and maximum values of the unknown vector p. Then by clicking on the parametrization button of this windows, a head-predefined C-code window is opened enabling the user to include the script of the parametrization map param involved in (3). For the particular activated sludge problem, p is of dimension 8 with the first four components standing for the unknown initial state while the remaining components stand for the unknown parameters that are supposed here to be constant during the observation horizon.

At this stage, CLPP disposes of everything needed to simulate the system model. This can be done by clicking on the simulate button depicted on Figure 1. This opens the dialog box shown in Figure 5 where the simulation time, sampling period and the value of the parameter vector p can be entered by the user. Note also that by checking the Export Data check-box, the simulation results can be saved in text file for further use with more elaborated graphical softwares. Note however that some aspects of the plots can be customized using the dialog-box of the plots button of Figure 1.

The definition of the observer parameters T and the different weighting curves $\phi_\sigma(\cdot)$ used in the singularities avoidance technique depicted above can be done by clicking on the CLP2 box of Figure 1. The corresponding dialog-box is shown in Figure 7.

At this stage, the observation algorithm can be tested by clicking on the test button of Figure 1. This opens the test dialog box (see Figure 8) in which the user can define the number of function evaluations and the initial value of the parameter vector p. Typically, this values must be different from the values used to produce the simulation in order to check the convergence of the estimation scheme. The Solver Settings button of the Test dialog box enables the solver and its parameters to be chosen by the user as depicted in Figure 8. This includes the observation window, the optimization algorithm and its parameters (initial trust region, minimum step, etc.)

Pressing on the OK button of the Test dialog box (see Figure 8) opens the plot window where the estimation results are shown together with a dynamic window showing the evolution of the cost function during the iteration (see Figure 9). At each sampling instant, the observer window is shifted and any new available measurement that might have been acquired since the last sampling instant are
Fig. 7. Dialog Box of the CLP2 block of Figure 1. This enables some of the optimization options to be chosen for the observation algorithm.

Fig. 8. Dialog Box of the Test button of Figure 1. This enables the observation horizon T and the weighting curves ϕ to be defined by the user.

Fig. 9. The observer test view. The evolution of the estimated trajectories over the observation window is shown for the state, output and the disturbance vectors. The dynamic evolution of the value of the cost function is also displayed in the central window.

4. FURTHER ISSUES

4.1 Measurement Handling

In this section, the term measurement concerns both the input and the output measurements. One of the nice features of CLPP is the ability to handle non synchronized measurements acquisition which is a quite recurrent situation in process industry. Indeed, some measurements need post-processing protocols that are time consuming resulting in long time periods between two successive measurement availabilities. Moreover, since some of such operations involve human intervention, this leads to a non uniform sampling time.

CLPP offers two modes of measurement acquisition during the prototyping phase:

(1) Internal acquisition mode

In this mode, the measurements that are generated during the simulation phase are used in the observer test phase. Note that in this case, the acquisition rate for each measurement is defined by the acquisition rate parameter of the corresponding sensor (see Figure 3). Note that when using this mode, it is still possible to use different models for the observer and the simulation by including additional non zero uncertainty components in the uncertainty vector w for which the search domain used by the observer is $\{0\}$.

(2) External acquisition mode

In this mode, the measurement data are given by text files data.txt having the following structure:

```
%==============
% File Name
%==============
```

Figure 10 shows the results of the simultaneous state and parameter estimation for the activated sludge example. Note that this set of plots is realized using MATLAB graphical tools using the data files that have been designated to export the session results. This can be done using the Export data check-box of the Test window (see Figure 8).
4.2 Observability/Identifiability Analysis

In addition to its use for robust observer design, CLPP is a precious tool when one needs to study the feasibility of the corresponding inverse problem. As an example, Figure 11 shows the results of a simultaneous state and parameter estimation of a recently proposed hydrogen production model with Chlamydomonas reinhardtii (see Fouchard et al. [2009]). This is a typical situation where it is obvious that the inverse problem is, at least badly conditioned if not unfeasible. Indeed, the plots show that the predicted outputs are almost identical to the measurement (over the observation horizon) while the initial states at the beginning of the observation window are quite different. User may now increase the observation horizon or check different kind of measurement, etc.

5. CONCLUSION

In this paper, the software CLPP, a user-friendly software for fast prototyping of robust nonlinear observer is described. The technical difficulties are made transparent to the user. The latter has to feed the model equation, the sensor equation as well as high level parameters such as the observation window, the maximum number of function evaluation, etc. Different and/or irregular measurement acquisition rates can be handled. Once the observer is calibrated, the designed solution can directly be used in a Matlab/Simulink observer block for further use in diagnosis and/or control purposes.

REFERENCES