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Abstract: In this paper, an algorithm for the construction of nonlinear optimal

observers is proposed. The key feature is the de�nition of an elementary problem,

which is a scalar optimal control problem. The resolution of this problem is done

in tw o stages: 1) Solution of a scalar Hamilton-Jacobi equation to �nd an optimal

cost function of the unknown initial state and 2) Choosing the initial state to

minimize this function.
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1. INTRODUCTION

In many practical situations it is not possible

to accede to all the state variables of a system

to apply the state feedback. This is due to the

technological limitations that exist to measure

the states directly or because the measurement

devices (sensors) are scants because of economical

restrictions. Then, to be able to apply the state

feedback, an estimation of the vector of states

must be obtained.

For the linear case, the solution for the observa-

tion problem can be obtained by the well known

Luenberger observer (Luenberger, 1971). But for

the case of nonlinear systems, there is no sys-

tematic method to solv ethe general observation

problem. Also, the methods to construct nonlinear

observers present at least one of the next draw-

backs: restrictiv e structural conditions to be satis-

�ed, model's errors and disturbances that are not

explicitly tak en into account, heavy calculations

to be performed, etc. It is clear that a surv ey of

existing works is beyond the scope of this paper,

related surveys can be found in (Alamir, 1999; Be-

san�con, 1996; Misaw a and Hedrick, 1999; Walcott

et al., 1987; Gow-Bin et al., 1997)

In this paper, interest is focussed on a new method

to construct a robust optimal nonlinear observer.

The method consists �rst in dividing the main

problem in to n scalar ones, each scalar problem

is called an "elementary problem" (EP). Then

in solving each scalar optimization problem using

a scalar Hamilton-Jacobi equation's solver. The

solutions of the di�erent scalar problems is then

"analysed" to de�ne a new set of scalar problems

to the next iteration. Iterations continue until all

these solutions are mutually compatible.

While multi-dimensional Hamilton-Jacobi equa-

tions (HJE) are quite diÆcult to solve in general

(Sage, 1977), scalar (HJE) can now ada ys bene-

�t of powerful numerical solvers. The algorithm

proposed in this paper is a �rst step towards

the construction of nonlinear observation scheme

that is independent of any structural properties

with the abilit y to handle bounded noises and

modelling uncertainties.

This work is rather exploratory, it may be viewed

as a �rst step tow ards the construction of moving-
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horizon like observer that is suitable to explicitly

handle uncertain and perturbed systems.

This paper is organized as follows: First, some

notations are introduced and the problem is for-

mulated in section 2. Then the principle of the

algorithm is presented in section 3. The notion of

elementary problem and its resolution are exposed

in section 4. Finally, in section 5 an illustrative

example is proposed.

2. THE OBSERVER PROBLEM

Consider nonlinear systems given by:

_x = f(x; u; Æ; t) ; y = h(x; Æ; t) (1)

where x 2 <n, y 2 <p, u 2 <m and Æ 2 <q

stand for state, measured output, control and

disturbance/uncertainty vectors respectively. The

disturbance/uncertainty vector Æ is supposed to

verify the following constraint:

8t � 0 ; jÆi(t)j � Æ
max

i
; i = 1; : : : ; q (2)

where (Æmax

i
)
q

i=1 is an a priori known sequence

with upper limits.

Also consider some horizon of observation T > 0

and a sampling period s > 0 such that (N �

1)s = T where N 2 N is a strictly positive integer.

2.1 The problem formulation

The objective is to propose an e�ective method

that �nds a good suboptimal solution of the fol-

lowing observation problem:

The measures of y and u being acquired with a

sampling rate s, propose an algorithm that approx-

imately solve the optimal �ltering problem de�ned

by the following criterion:

x̂(t); Æ̂(t) min
~x(:);~Æ(:)

NX
i=1

ky(t� is)� ŷ(t� is)k2

ŷ := h(~x(�); ~Æ(�); �) (3)

under the constraints (1) and (2). Using the

notation

�Y (t) := (y(t�Ns); : : : ; y(t� s))T

the observer dynamics is given by

�Y (t) =A �Y (t� s) +By(t� s)�
x̂(t); Æ̂(t)

�
=F( �Y (t); t)

where F( �Y (t); t) is the optimal solution of (3)

while A and B are classical �nite-memory related

matrices.

De�nition of the elementary
problems

Elementary solutions

available

Communication of the
results and update

of the elementary
problems

Transmission of the
new parameters

Fig. 1. The structure of the algorithm

3. THE PRINCIPLE OF THE ALGORITHM

In this section the principle of the algorithm is

stated, and a simple example is given to clarify it.

The scheme of Figure 1 summarizes the principle

using Petri nets diagram.

The design of the proposed resolution algorithm

passes by the de�nition of an elementary problem

(EP). The resolution of such (EP) is the role of

an agent. The solution of the original problem is

done by the synchronized communication between

several agents solving each one an (EP). Thus,

the resolution of all (EP) can be done in parallel.

At the end of this phase each agent has the solu-

tion of its own problem. Then a single processing

phase of the results of each agent is performed to

rede�ne each new (EP) according to the results

obtained by the set of the agents. A parallel phase

of calculation can then start again.

To illustrate the principle described above, con-

sider the following modi�ed Van der Pol system:

_x1 = x2 + u+ v(t) (4)

_x2 =�9x1 + �(t)(1� x
2
1)x2 (5)

y= x1 (6)

where v is some unmeasured external signal. As

the measures of the output x1 = y are obtained on

a given interval, an optimal control problem can

be de�ned in which (4) is the dynamic system, x1
is the state, (v; x2) is the control vector and the

measured signal is the reference to be tracked. The

resulting optimal trajectory of the state x1 and

the control x2, denoted by x
(k;1)
1 and x

(k;1)
2 are

obtained.

In the same way, the optimal solutions x
(k�1;i)
j

are

used to de�ne reference signals for a scalar optimal

control problem in which (5) is the dynamical

system, x2 is the state, x1 is the control and � is a

well-known signal. The resulting optimal solutions

are denoted by x
(k;2)
1 and x

(k;2)
2 .

As it is noticed, two trajectories for x1 will be

obtained and two for x2, one coming from each

(EP) agent solver, a process of the procured



results will therefore be made in order to obtain

a single current estimation (at iteration k) for x1
and x2. After this, the iteration can be continued.

4. THE ELEMENTARY PROBLEM

The (EP) is an optimal control problem with

unknown initial state of a dynamic system with

only one state, that is, a dynamic system given

by:

_� = F (�; xc; �; �) ; � 2 [t� T; t] (7)

where

� � 2 < is the state.

� x
c(:) is a signal whose evolution is known on

[t� T; t].

� � is a control vector satisfying a constraint of

the type �(�) 2 V .

The problem then consists in solving for system

(7) the optimal control problem with unknown

initial state according to:

min
�(:);�(:)

Z
t

t�T

q(�(�) � �
ref (�))2 +

rk�(�) � �
ref (�)k2 (8)

in which �
ref (:) and �

ref (:) are trajectories of

reference given a priori.

4.1 General resolution of the elementary problem

As it has been mentioned in the previous part

of the section, an (EP) is an optimal control

problem with the following characteristics:

� The system is variant in the time.

� The optimization horizon is �nite.

� The initial state is unknown.

In order to solve this problem, it will be proceeded

in two stages:

(1) The (EP) represented by equations (7)-(8)

is transformed into a scalar Hamilton-Jacobi

equation (HJE). This equation is solved us-

ing existing and e�ective codes of calculation.

In addition, this solution gives the values of

the optimal solutions corresponding to all

possible initial states. In e�ect, the solution

of these equations leads to a function V (0; �)

that represents the optimal value of the cri-

terion in function of the initial state.

(2) The initial state then is chosen by minimizing

V (0; �), i.e., �̂(t� T ) = argfmin� V (0; �)g. It

is clear that the initial state �̂(:) and the con-

trol signal �̂(:) are obtained by integration.

�
ref (:)

�
ref (:)

x
c(:)

�
opt(:)

�
opt(:)

EP

Solver

Fig. 2. Inputs and outputs of the elementary problem

resolution module.

Summarizing, this procedure consists in dividing

the unknowns into two groups. The initial condi-

tion of the state in one part and the control in

another one. The optimal control is �rst found in

function of the initial state, then it is chosen im-

mediately to minimize the initial global criterion.

The formalism of Hamilton-Jacobi for the search

of laws of control by state feedback minimizing a

given criterion is brie
y recalled. The formalism

(Isaacs, 1954{1956) stipulates that if there exists

a C
1 function V (�; �) that satis�es the following

partial di�erential equations (with terminal con-

dition V (T; �) = 0):

V� (�; �) + �H(�; �; V�(�; �)) = 0 (9)

in which

�H(�; �; V�) = H(�; �; xc; �̂(�; �; V�); V�)

H(�; �; xc; �; �) = L(�; �; xc; �) + �
T
F (�; �; xc; �)

�̂(�; �; V�) = argfmin
�2V

H(�; �; xc; �; V�)g

then, to solve the (EP) de�ned by equations (7)-

(8) one may integrate the scalar partial di�erential

equation (9) backward in time to obtain the

function V (0; �).

A resolution module of an (EP) is presented as

indicated on Figure 2.

5. ILLUSTRATIVE EXAMPLE

The methodology described above will be applied

to the modi�ed Van der Pol system (4)-(6).

Note that with respect to the general form (1),

Æ = v, u(:) and �(:) are known functions of time,

that is, xc = [u �]T .

It is supposed that measures have been acquired

since at least T seconds. Thus, it makes use of the

N last samples of measurement of the output y

and of the control input u.

Ym(t) := [ym(t�Ns); : : : ; ym(t� s)]T

U(t) := [u(t�Ns); : : : ; u(t� s)]T

It is supposed in addition that an initial estimate

of the trajectories of all the signals is available,

more precisely, one has x(0)(�) and Æ
(0)(�).



ym(:) 
x
(k�1)
2 (:)

v
(k�1)(:)

!

u(:)

x
(k�1)
2 (:)

x
(k�1)
1 (:)

�(:)

x
(k;1)
2 (:)

v
(k;1)(:)

x
(k;1)
1 (:)

x
(k;2)
1 (:)

x
(k;2)
2 (:)

Delay

�
x
(k)(:)

Æ
(k)(:)

�

E:P:(1)

E:P:(2)

Processing

Fig. 3. Elementary problems for the illustrative

example

This information is summarized by the values of

these signals at di�erent instants of sampling, the

corresponding function is then obtained by simple

cubic spline interpolation.

The diagram of Figure 3 makes it possible to

understand the logic of the proposed algorithm

in the case of system (4)-(6).

5.1 Explanation of Figure 3

� On the diagram of the Figure 3, the nota-

tions �
(k;1) and �

(k;2) represent the results

(concerning a variable �) of the resolution

at iteration k of the (EP 1) and (EP 2)

respectively.

� In the (EP 1), x1 is the state, (x2; v)
T is the

control, u is a known signal. The reference

signals are de�ned starting from the solution

of the (EPs) at the preceding iteration (af-

ter appropriate processing). With respect to

the de�nition of the (EP) [see (7)-(8)], the

following correspondences hold

� $ x1 ; xc $ u ; � $

�
x2

v

�

�
ref (:)$ ym(:) ; �

ref
$

 
x
(k�1)
2

v
(k�1)

!

� In the (EP 2), x2 is the state, x1 is the

control, � is a known signal. With respect

to the de�nition of the (EP), the following

correspondences hold

� $ x2 ; xc $ � ; � $ x1

�
ref (:)$ x

(k�1)
2 (:) ; �ref $ x

(k�1)
1

� The processing block is supposed to de�ne

the values �nally selected at the end of the

iteration k insofar as certain values are ob-

tained at the same time by the resolution

module for problem 1 and problem 2. An

example of such processing can be quite sim-

ply an average. Weighted averages with ju-

diciously selected coeÆcients can be consid-

ered later. Thus, a way of carrying out the

processing is the following one:

x
(k)
i

:=
x
(k;1)
i

+ x
(k;2)
i

2
; i = 1; 2 (10)

� Finally, at the end of the iteration k, the

estimate of the state is given by x
(k)(t)

As it has been set out previously, the main idea

of this algorithm is to solve each equation of

the system like independent systems but using

coupled reference signals in order to force the

�nal solution to be compatible with all system's

equations.

5.2 Results

The data used during the simulation are the

following:

� The initial conditions are x(0) = [0:5;�0:3]T

� t0 = 0, tf = 10

� q = [10; 1�10�3]T , r =

�
1� 10�3 5� 10�4

10 0

�
are the penalty coeÆcients.

� The known signals are

u = sin(t), � = 0:1sin(t)

At iteration 1, the algorithm begins with the

initialization of the Van der Pol system (4)-(6),

which is integrated with erroneous initial state for

x2, this initial value is 0, in addition to this error,

the equation (5) is divided by 0.5, to obtain initial

reference signals. The external v used is given by

v =

8>><
>>:
0; t � 0:1tf�
t� 0:1tf

0:1tf

�
0:5; 0:1tf < t � 0:2tf

0:5; 0:2tf < t

(11)

On Figure 4 the solutions of the (EP1) are shown.

In the upper graphic �ref represents the true state

x1 which is the measured output y. As it can

be noted, the estimation of the trajectory of the

state x1 is already obtained, �̂ = �
ref , since the

reference is the measured output x1 = y. In the

middle graphic it can be noted that the estimation

of x2, namely �̂1, is far from the true state x2,

because of the given reference �
ref

1 . In the lower



graphic the behaviour of the estimation, namely

�̂2, of the external signal v, with reference �
ref

2 = 0

is presented.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

�
ref = x1(true) = y (--)

�̂ (-)

x2(true) (--) �̂1 = x
(1;1)
2 (-)

�
ref

1 (-.)

�̂2 (-) v(true) (--)

�
ref

2 = 0 (-.)

Fig. 4. Elementary Problem 1 at iteration 1

In Figure 5 the solutions for the (EP2) are shown.

In the upper graphic �ref represents the true state

x1 which is the measured output y. As it can be

noted, the estimation of the trajectory of the state

x1 is already obtained. In the lower graphic it

can be noted that the estimation, namely �̂, has

not yet converged to the true state x2, because

the given reference, namely �
ref , is the initial

trajectory with an erroneous initial state x
(0)
2 .

Note that the estimation for x1 is already obtained

for both (EP), then, for the other �gures this

graphics will not be presented.

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

x2(true) (--)

�̂ (-)

�
ref = x1(true) = y (--)

�̂ (-)

�
ref = x

(0)
2 (-.)

Fig. 5. Elementary Problem 2 at iteration 1

The �nal solutions for x1 and x2 are obtained

from the processing phase at the end of iteration

1. These new solutions will be used in the next

iteration.

In the upper graphic of Figure 6 it can be noted

that the estimation of �̂1, is closer to the true state

x2, in spite of the reference �
ref

1 and this is be-

cause of the results obtained from the processing

phase. In the lower graphic of this �gure, it can

also be noted an improvement in the behaviour

of the trajectory �̂2 with respect to the preceding

iteration.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

x2(true) (--)

�̂1 = x
(1;2)
2 (-)

�
ref

1 (-.)

�̂2 (-) v(true) (--)

�
ref

2 = 0 (-.)

Fig. 6. Elementary Problem 1 at iteration 2

The results obtained for the (EP2) at iteration

2 are very closer to those obtained at iteration 1,

but in this case, there is no reference signal �ref .

[see Figure 7 and Figure 5]

0 1 2 3 4 5 6 7 8 9 10
−6

−5

−4
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−1

0

1

2

3

4

x2(true) (--)

�̂ (-)

x
(0)
2 (-.)

Fig. 7. Elementary Problem 2 at iteration 2

It can be noted in the upper graphic of Figure 8

that the estimation of the trajectory of the state

x2, namely �̂1, is already obtained, and in the

bottom graphic that an estimation of v is not

achieved, but a trajectory that globally re
ects

the behaviour of v is obtained.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

x2(true) (--)

�̂1 (-)

�
ref

1 (-.)

�̂2 (-) v(true) (--)

�
ref

2 = 0 (-.)

Fig. 8. Elementary Problem 1 at iteration 5

In Figure 9 the �nal solutions of the states tra-

jectories after the processing phase at iteration 2

and iteration 5 are shown. In the lower graphic

of this �gure, it can be noted that the estimation



of the trajectory of the state x2 has been practi-

cally achieved in only two iterations, although the

initial trajectory was far from the real trajectory.

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

x1(true) (--)iteration 2 (-)

iteration 5 (:)

iteration 2 (-)

iteration 5 (:)

x2(true) (--)

x
(0)
2 (-.)

Fig. 9. The trajectory of the states after the processing

phase at di�erent iterations

The algorithm stops when the maximum value

of the absolute value of the error between the

solution of the processing phase at iteration k and

the solution of the processing phase at iteration

(k-1) of the trajectory of the state x2 is less or

equal to a given �. That is

max
t

jx
k

2(t)� x
(k�1)
2 (t)j � � ; � = 1� 10�4

[see Figure 10 ]

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Error

Number of iterations

Fig. 10. The error at each iteration

6. CONCLUSION

In this paper, an algorithm towards the construc-

tion of robust optimal observers is presented. The

concept of (EP) is introduced as well as the way

to solve it.

This methodology presents the advantage that it

is not necessarily to know the structural proper-

ties of the system to design the observer. Also, this

methodology allows to separate the original prob-

lem in scalar problems, that means that systems

of great order can be solved with relative facil-

ity, in addition to this, parallel implementation is

straightforward and may accelerate the resolution

of the global observation problem.

Furthermore, even for uncertain/perturbed sys-

tems for which observability is not easy to qualify,

the proposed algorithm may be used as a study

tool enabling to show whether several signals con-

�guration may lead to the same output under

certain circumstances.

There are three main issues to be considered in

later works in order for the proposed approach to

becomes really operational: Convergence proper-

ties, weighting parameters tuning and execution

time.
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