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Abstract—This paper deals with the computational efficiency

evaluation of a hierarchical DMPC (distributed model predictive

control) framework for resource sharing problems. The provided

DMPC framework is based on a dual decomposition of the

centralized open-loop controller which is decomposed into several

subproblems and one coordinator problem. At coordinator level

the bundle method is used in order to recover the globally optimal

solution through an iterative process.

The main focus of this paper is a detailed discussion of

the impact of the bundle method’s parametrization on the

computational performance of the whole scheme. Additionally

a qualitative comparison with a similar scheme based on primal

decomposition is provided and some rules of thumb for deter-

mining an effective parametrization of the bundle method are

established. In the provided simulations the scheme is applied to

a large-scale problem of the smart district context. More precisely

the centralized optimization problem of a district composed of

1000 buildings sharing a globally limited power resource is able

be solved to optimality using our proposed framework in around

3 seconds.

Index Terms—Dual decomposition, bundle method, smart dis-

trict, DMPC, large-scale optimization

I. INTRODUCTION

Resource sharing problems are playing a crucial role in
today’s modern society where continuous economic growth
needs to be achieved while facing more and more limited
resources. The most promising way to solve this dilemma
today is to improve the efficiency of using those resources. For
instance in transportation systems important savings could be
possible if transportation capacities were more optimally coor-
dinated or in electrical power grids environmentally harmful
power stations using limited fossil energy carriers could be
avoided if the energy usage was better coordinated between
producers and consumers.

One promising technique which is able to achieve these
objectives is Distributed Model Predictive Control (DMPC).
In DMPC a large-scale optimization problem is divided
into many sub-problems which are then solved individually.
Through an iterative communication scheme the local con-
trollers are able to recover the optimal solution of the central-
ized problem or at least to find a relevant sub-optimal solution.
The main reason why DMPC approaches are more suited to the
considered class of resource sharing problems than classical
centralized MPC controllers is due to the problems’ large-
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scale character which often makes a centralized controller
intractable.

Since a detailed discussion of available DMPC techniques is
beyond the scope of this article, for more general information
on DMPC, the reader is referred to [1] where a collection of
state-of-the art DMPC-techniques is provided. The following
literature review directly focuses on the class of resource
sharing problems considered for this paper where several
subsystems with decoupled and possibly nonlinear dynamics
are subject to one or more shared and limited resources. In
[6] different algorithms for optimal file allocation problems
in distributed computer systems are discussed and similarities
with micro-economic systems are emphasized. In [8] a DMPC
scheme based on a primal decomposition and using a disag-
gregated bundle method to solve the coordinator problem is
shown to require remarkably few iterations in receding-horizon
mode in order to achieve global optimality. A discussion of
different decomposition methods is provided in [9] where
amongst others primal and dual decomposition techniques are
discussed with an emphasis on resource sharing problems.
Finally, in [10], a comparison of two DMPC frameworks
which are based on a primal and on a dual decomposition
is performed in the context of a power allocation problem in
smart districts.

In this work we consider a general nonlinear DMPC scheme
for resource sharing problems. An algorithm is proposed which
is based on a dual decomposition of the centralized problem
and it is solved using different versions of the bundle method,
namely disaggregated, aggregated and partially aggregated
bundle method. The central contribution in this work is the
discussion of the cost in terms of computation time that
occurs when the resource sharing problem becomes very large
and how these difficulties can be overcome. In the scope
of this discussion we also consider the very similar scheme
proposed in [8] which is based on a primal decomposition
and mention its advantages and drawbacks compared to our
proposed approach.

In a simulation section we provide simulation results where
the proposed scheme is applied to a problem of the smart
district context where a limited amount of energy is the
shared resource between 1000 buildings. The required time
to converge to the global optimum is around 3 seconds for
a centralized problem having a total number of decision
variables of about 800 000.

The paper is organized as follows: In section II the con-
sidered centralized MPC problem is presented. Section III
introduces the dual decomposition and the principle of the bun-
dle method. In section IV the impact of the bundle methods’



parametrization on the computational efficiency is discussed in
detail. In section V the proposed algorithm is applied in the
context of smart districts where a limited amount of available
energy is the shared resource in a district composed of 1000
buildings. Finally section VI concludes the paper.

II. PROBLEM DESCRIPTION

In this section the class of problems targeted by the pro-
posed scheme is given. Namely the class of resource sharing
problems is considered where several subsystems are coupled
through a shared and limited resource.

A. Subsystem MPC problem
Consider a set of N

S

dynamically uncoupled subsystems
where each subsystem l 2 S := {1, ..., N

S

} obeys the general
nonlinear dynamic equation:

x

l,k+1 = f(x
l,k

, u

l,k

) (1)

where x

l,k

and u

l,k

are the state and input vector of
the subsystem l at instant k. In the sequel, given a vector
quantity v

l

2 Rnv related to subsystem l, the boldfaced
vector v

l,k

represents the future profile of v

l

over the pre-
diction horizon of length N

p

beginning at instant k, namely
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, ..., v
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i
T

. Note that when no ambiguity
occurs the time index k is dropped.

For each subsystem l 2 S the vector r

l,k

2 Rnr repre-
sents the vector of consumed resources where n

r

stands for
the number of different resources. The relation between the
dynamics of system l and its consumed resources r

l

over the
prediction horizon is expressed through the following local
equality constraint:

r
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= h
l

(x
l,k

,u
l,k

) (2)

Each subsystem l 2 S is controlled by a local model
predictive controller which is denoted hereafter by MPC

l

.
This is done by solving an optimization problem at each
sampling instant k which is given by:

MPC
l

: Minimize
xl,k2Xl,k,ul,k2Ul,k

L

l

(x
l,k

,u
l,k

) (3)

where L

l

(x
l,k

,u
l,k

) is the objective function of subsystem
l and X

l,k

,U
l,k

denote the domains of the state and input
constraints respectively.

B. Centralized MPC problem
Consider now a global limitation on the shared resource. It

is expressed through the following inequality:

H(r1,k, ..., rNS ,k

)  R
lim

(4)

where R
lim

2 Rnr·Np is the vector of the global resource limit
over the prediction horizon and H(r1,k, ..., rNS ,k

) being linear
in order to be decomposable as shown in the next section. For
notational conciseness we will assume H(r1,k, ..., rNS ,k

) =P
l2S

r
l,k

in the following.

The centralized MPC problem is then given by:

Minimize
{xl,k2Xl,k,ul,k2Ul,k}l2S
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(5)

For high numbers of subsystems N

S

the centralized op-
timization problem becomes very large which may cause
difficulties in handling the problem for the following reasons:

• non-scalability
• high computation times
• high communication requirements
To deal with these difficulties, hierarchical decomposition

methods where the centralized problem is decomposed into
several subproblems and one coordinator problem are very
well suited. Two methods for decomposing the centralized
problem stand out, namely primal and dual decomposition.
In primal decomposition methods the coordinator problem is
to directly determine the optimal distribution of the limited
resource amongst the subsystems. In dual decomposition meth-
ods, the coordinator determines an optimal virtual price on
the resource of interest such that the global limitation on the
shared resource is respected.

A DMPC framework addressing resource sharing problems
based on primal decomposition has been stated in [8]. In this
paper we propose an approach based on dual decomposition.
Common to both approaches is the bundle method which is
used to efficiently solve the resulting coordinator problem
based on the sub-gradient information of the subproblems.

III. THE APPROACH: DUAL DECOMPOSITION USING
BUNDLE METHODS

A. Dual decomposition
In this section problem (5) is decomposed using the dual

decomposition method. In the following the notation v :=
{v1, ..., vNS} is used.

The dual problem is given by:

Maximize
�k


inf

{xl,k2Xl,k,ul,k2Ul,k}l2S

L (x
k
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k
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k

)

�
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k

� 0

(6)

where L (x
k

,u
k

,�
k

) is the Lagrangian given by:
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)

(7)
The vector �

k

2 Rnr·Np represents the so-called Lagrangian
multipliers or dual variables.

Since the subsystems’ dynamics are decoupled, the dual
problem (6) can be decomposed into N

s

subproblems (eq. (8))
which will be denoted as MPCdual

l

(�
k

) and one coordinator
problem (eq. (9)):

MPCdual
l

(�
k

) : Minimize
xl,k2Xl,k,ul,k2Ul,k
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(8)



Let J
l,k

(�
k

) := L

l

(x?
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,u?
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)+�
k

·r?
l,k

denote the achieved
optimal value for a given dual variable �

k

.
The coordinator problem becomes then:

Maximize
�k

X

l2S

J

l,k

(�
k

)� �
k

·R
lim

Subject to: �
k

� 0

(9)

Solving the coordinator problem (9) is not a trivial task,
because the functions J

l,k

(·) are not known at coordinator
level and can only be evaluated point-wise for a given value
of �

k

and at the computationally expensive price of solving
all the subproblems and communicating their results to the
coordinator. For this reason the efficiency of the solution
strategy of the coordinator problem plays a crucial role. In the
following subsection the bundle method which fulfills these
requirements is introduced.

B. Solving the master problem - Bundle method

As mentioned above, the master solver does not have any
information about the state and the shape of the subprob-
lems objective functions J

l,k

(·). In order to solve the master
problem, i.e. to determine the optiamal virtual price �

k

, the
idea is to approximate the functions {J

l,k

(·)}
l2S successively

through an iterative process. More precisely, at each iteration
the master affects a value of the dual variable �

k

to the
subproblems, the subproblems are solved and their objective
values J

l,k

(�
k

) as well as their consumed resource vectors
r
l,k

are communicated to the master. The interesting point
about the returned information is that according to eq. (8)
the resource vector r

l,k

is in fact the sub-gradient of the
local objective function with respect to the dual variable:
r
l,k

(�
k

) := @J

l,k

(�
k

). This sub-gradient interpretation of
the resource vector r

l,k

is the reason why bundle methods
appear to be an appealing way to solve the master problem.
The bundle method is based on iteratively approximating the
cost function J =

P
l2S J

l,k

(�
k

)� �
k

·R
lim

by a so called
cutting plane model. For more information regarding bundle
methods the reader is referred to [4] or to [8] where this
technique is applied to a similar DMPC problem based on a
primal decomposition. In order to keep the notations as concise
as possible the index k is dropped in this section since the
iterative process takes place at a given instant k.

In the following the bundle method is described for its
disaggregated version where for each subsystem’s objective
function J

l

(�) an individual cutting plane approximation
J̌

l

(�) is stored at the master level. However it is also possible
to approximate the sum of all subsystems

P
l2S J

l

in a single
cutting plane model (aggregated bundle) or even to divide the
subsystems into groups of N

g

subsystems where each group is
represented by one cutting plane model (partially aggregated
bundle). A detailed discussion of the impact of this choice is
provided in the following section.

For each subsystem a cutting plane approximation of its
objective function {J

l

}
l2S is stored in a memory B(s)

l

which
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Fig. 1: Objective function Jl and its piece-wise linear approximation
J̌l(�) after 4 iterations.

is updated at each iteration s and defined as follows:

B(s)
l

:= {g(i)
l

, ✏

(i)
l

}
i=1,...,nB (10)

The bundle B(s)
l

behaves like a FIFO register that keeps
only the last nB elements in memory. At every iterate s the
last element (i = nB) in the bundle is forgotten and the first
element (i = 1) is updated by:

g
(1)
l

 r
l

✏

(1)
l

 J

l

(�(s))� hr(s)
l

,�(s)i
(11)

where J

l

(�(s)) and r
(s)
l

are respectively the objective function
value and the optimal resource profile computed by subsystem
l for the given dual variable �(s) at iteration s. Based on
the bundles B(s)

l

the cutting plane approximations J̌

(s)
l

(·) are
defined as:

J̌

(s)
l

(·) = min
i=1,...,nB

hg(i)
l

, ·i+ ✏

(i)
l

(12)

Every linear piece hg(i)
l

, ·i + ✏

(i)
l

defines a half space and
is a supporting hyperplane of the hypograph hyp(J

l

) of the
function J

l

. Since J

l

is concave each hyperplane stored in
the bundle B(s)

l

constitutes a global over-estimator of J

l

as
illustrated in figure 1. Replacing the objective function terms
of the subsystems J

l

by their approximations J̌

(s)
l

and adding
a regularization term consisting of a weighted trust region
around the current best solution �̄

(s) in problem (9), the
master problem that has to be solved at each iteration s finally
becomes:

�(s+1) := Maximize
�

X

l2S

J̌

(s)
l

(�)� � ·R
lim

+ µ

����� �̄
(s)

���
L2

Subject to: |�� �̄
(s)|  ⇢

� 0
(13)

where the variable parameter ⇢ is the trust region size around
the current best solution �̄

(s) (the so-called central point) and
µ is the weight on the L2-norm of the distance from the central
point �̄(s).



The updating rule for the central point �̄
(s) and for the

trust region size ⇢ from one iteration to another is pretty
straightforward: If the objective value J(�(s+1)) computed
by equation (9) is greater than the objective value at the
central point J(�̄

(s)
) then the central point is updated as

�̄
(s+1)  �(s+1), otherwise it remains unchanged. The trust

region parameter ⇢ is increased in case the objective value
was improved and decreased otherwise. Note that also if no
improvement was achieved, the precision of the approximation
is still improved due to the new elements that were added to
the bundles.

IV. ALGORITHM EFFICIENCY EVALUATION

In this section we discuss difficulties arising when the pro-
posed method is applied to large-scale problems. An additional
aspect in the scope of this section is a comparison with the
DMPC framework proposed in [8] which is based on a primal
decomposition of the centralized problem and solved by a
disaggregated version of the bundle method.

A. Difference between primal and dual master problem

In the following the main structural differences between the
primal and the dual decomposition approaches are pointed out.

• The number of decision variables at the coordinator
level are increasing much stronger with the number of
subsystems N

S

in the primal decomposition approach.
This results in a potentially higher computation time for
the primal master problem for high values of N

S

:

primal: N

variables

= N

S

·N
p

+N

S

dual: N

variables

= N

p

+N

S

(14)

• While in the dual decomposition approach the consumed
resources r

l,k

of the subproblems are at the same time the
gradients of the subproblems with respect to the virtual
price vector, the subproblems’ gradients g

l,k

(r
l,k

) 2
@J

l,k

(r
l,k

) for the primal decomposition approach are not
available in such a natural way unless the problem is a
LP or a QP (Quadratic Program).

• One important advantage of the primal decomposition
approach is that at each iteration, the algorithm provides
a feasible solution, since the shared resource constraint
H(r1,k, ..., rNs,k)  R

lim

is explicitly guaranteed by the
master problem.

The time to solve the master problem has a crucial impact
on the efficiency in solving the global optimization problem.
In order to understand the computational complexity of the
master problem, the following paragraph describes how the
cutting plane approximations are implemented and solved
as a Linear Program (LP). The following equation shows
the LP structure representing the disaggregated cutting plane
approximations of a problem with N

S

= 2 or more precisely:
Maximize

�

⇥
J̌1(�) + J̌2(�)

⇤
.

Maximize
�

⌘1 + ⌘2

Subject to:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

g
(1)
1 � +✏

(1)
1 �⌘1

...
...

g
(nB)
1 � +✏

(nB)
1 �⌘1

g
(1)
2 � +✏

(1)
2 �⌘2

...
...

g
(nB)
2 � +✏

(nB)
2 �⌘2

(15)

From this equation it becomes obvious that the number
of constraints N

ctr

in the master problem (and with it the
computational effort to solve it) depends on the amount of
subsystems N

S

and the amount of cuts nB per cutting plane
model. More precisely: N

ctr

= nB · N
S

. Since the time to
solve the master problem increases quasi-exponentially with
the amount of constraints (as confirmed through simulations
which are shown in figure 2), the computational efficiency
of the disaggregated bundle method becomes very bad for
high numbers of subsystems N

S

due to the increasing time
t

Master

needed to solve the master problem. However this
limitation can be overcome when using aggregated or partially
aggregated versions of the bundle method as detailed in the
following section where the bundle method’s impact on the
scheme’s computational efficiency is investigated.

B. Aggregated vs. disaggregated bundle method
In this section aggregated and partially aggregated bundle

versions are recalled. Compared to the disaggregated bun-
dle method they can strongly increase the whole scheme’s
computational efficiency, especially for high N

S

. In the ag-
gregated bundle method, one cutting plane model is used to
approximate the sum of all subsystems’ objective functions.
This is obviously a less precise approximation and it usually
results in a higher number of iterations as it is demonstrated in
[7]. However the extremely reduced time t

master

to solve the
master problem at a given iteration makes it the more effective
solution in terms of total computation time when N

S

exceeds
a certain number. The partially aggregated bundle method can
be seen as a kind of trade-off between the fully aggregated and
the disaggregated bundle versions. The idea is to build groups
of several subsystems whose objective functions are then
approximated by a common cutting plane model. This way a
higher precision in the approximation of the subsystems’ ob-
jective functions is maintained and consequently the necessary
amount of iterations reduced, while still strongly decreasing
the computational effort of the master problem. The following
equation provides the resulting number of constraints N

ctr

in
the master problem:

N

ctr

= nB · NS

N

g

(16)

where N

g

is the number of subsystems whose objective
functions are approximated in one cutting plane model.



C. Convergence time

DMPC approaches require an important number of itera-
tions compared to a centralized solution as discussed in [3].
Obviously the necessary number of iterations is one important
factor to evaluate the efficiency of an algorithm. However
when aiming to assess the real-time implementability of a
DMPC framework a focus should not only be on the necessary
iterations but also on computation time savings and on the
impact of the communication infrastructure. Indeed in many
situations it may be more advantageous to accept a higher
number of iterations if the computational time per iteration
can be reduced sufficiently. The following equation provides
a way to estimate the total time a DMPC framework requires
to converge:

t

total

= n

iter

· (t
Master

+ t

comm

+ t

Subsys

) (17)

where n

iter

is the necessary number of iterations to converge
to the global optimum, t

Master

is the time to solve the master
problem, t

Subsys

is the time to solve one subproblem (note that
they can be solved in parallel) and t

comm

is the delay occurring
at each iteration due to the communication time between the
master and the subsystems.

It can be assumed that in equation (17) t
comm

and t

Subsys

are constant parameters. n

iter

and t

Master

however depend
both on the two parameters nB and N

g

of the bundle method,
which makes it not obvious to determine the optimal trade-off
for the bundle parametrization such that the total convergence
time t

total

of the scheme is minimal. However the qualitative
impact of nB and N

g

on the number of iterations n

iter

and
on the time to solve the master problem t

Master

can be
summarized as follows:

• n

iter

becomes minimal when the approximation of the
subsystems’ objective functions in the master problem are
sufficiently detailed. More precisely, a sufficient number
of cuts nB memorized in each bundle and a small enough
number N

g

, meaning few subsystems being approximated
in a common cutting plane model, result in a small n

iter

.
• High values of nB and small values of N

g

however
result in an important number of constraints according to
N

ctr

= nB · NS
Ng

in the master problem and consequently
in a high t

Master

(see figure 2). This means, there
is a trade-off to be made between reducing n

iter

and
increasing t

Master

.
Figure 3 qualitatively illustrates how the approximations’
precision, i.e. the number of constraints N

ctr

, affects the
whole scheme’s computational efficiency. Finding the optimal
trade-off between nB and N

g

for a specific problem however
is problem-dependent and needs to be done through offline-
simulations.

V. APPLICATION TO SMART DISTRICT SCENARIO

In this section application results of the proposed DMPC
scheme in the context of a smart district are provided. We
consider a district composed of 1000 buildings. At a given
instant in time, the buildings’ optimization problem is to
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Fig. 2: This figure shows that the time tMaster to solve the master
problem increases quasi exponentially with the number of constraints.
It also becomes obvious that it hardly matters whether the number of
constraints increases due to the number of cuts nB in each bundle
or due to the number of subsystems’ objective functions Ng being
aggregated in one bundle.

Fig. 3: Qualitative impact of the number of constraints Nctr =
nB · NS

Ng
on the total efficiency of the DMPC framework. Nctr

corresponds to the precision of the cutting plane approximations of
the subsystems’ objective functions which is tuned through the two
parameters nB and Ng .

guarantee the occupants’ comfort over a prediction horizon
of 24 hours while minimizing their energy bill. The building’s
optimization problems are subject to a coupling constraint,
namely a limited total power supply in the district. In [10] the
scenario is described in greater detail. A crucial point which
is worth being mentioned here is that the comfort constraints
requiring the indoor temperature to lie in a certain temperature
envelop, is a relaxed constraint. More precisely, violations of
the comfort bounds are penalized with a quadratic term in the
buildings’ objective functions. This way it is guaranteed that
there is always a feasible solution to the global optimization
problem, since in case of a severe power limit the indoor
comfort would be deteriorated.

Figure 4 shows results of the optimal solution of the district



problem for a 24 hour horizon and at a sampling period of
15 minutes. In order to achieve the best possible comfort
under the restrictive power limit certain buildings are storing
thermal energy during the night such that their consumption
is reduced during the peak hour. Note that the corresponding
centralized Quadratic Programming problem would have had
around 800 000 variables. Solving such a centralized problem
would clearly not be competitive compared to the distributed
version.

Assuming a negligible communication time t

Comm

= 0 and
supposing that all subproblems can be solved in parallel, an
estimation of the resulting computation time of the distributed
optimization problem is around 3 seconds as computed by
equation (18). The provided timings are obtained from simu-
lations on an Intel(R) Core(TM) i7-3540M @ 3.00GHz using
the gurobi solver (see [5]). Note however that in a realistic
implementation of such a solution the communication time
can become quite important, especially if the computation of
the buildings’ optimization problems would be performed on
local controllers which are physically installed in the buildings.
A more efficient solution in terms of computational efficiency
might be one that relies on cloud computing.

t

total

= n

iter

· (t
Master

+ t

comm

+ t

Subsys

)

= 30 · (25ms+ 0 + 80ms) = 3150ms

(18)

A. Assessing the scheme’s efficiency in open loop
In this section the impact of variations in the parameters nB

(number of cuts per bundle) and N

g

(number of subysystems
approximated in one bundle) on the global efficiency of the
dual decomposition scheme in open loop is measured in
simulations.

Figure 5 shows the convergence speed in terms of number
of iterations for different numbers N

g

of subsystems’ objective
functions being approximated in a single cutting plane model.
The number of cuts per bundle is fixed to nB = 6. From the
results one can see that the expected effect of an increasing
number of iterations for an increasing number N

g

can not be
observed for this specific problem. In fact, it does not matter
in this example whether a disaggregated or a fully aggregated
bundle version is used. Thus the best choice is simply the
aggregated bundle method since the computation time of the
master problem t

M

is smallest in this case as it can be seen
in the figure’s legend.

Table I shows the impact of a varying number of cuts kept
in the memory for each cutting plane model. For the different
simulations the number of subsystems grouped in one bundle
was fixed to N

g

= 50. The results show that as long as more
than one cut is stored in the bundle’s memory (i.e. nB � 2)
the convergence speed does not show a clear dependency on
nB for this specific problem. Thus the good choice is simply
a small number of cuts nB per bundle, since this leads to the
smallest computation time t

M

for the master problem.

VI. CONCLUSION

In this paper a DMPC framework using a dual decom-
position approach for solving large-scale resource sharing

0 2 4 6 8 10 12 14 16 18 20 22 24
0
5

10
15
20

P B
ui

ld
[k

W
]

0 2 4 6 8 10 12 14 16 18 20 22 24
0
2
4
6
8

10

P g
rid

[M
W

]

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10
20
30
40

Te
m

p.
[�

C
]

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05
0.1
0.15
0.2

Time [hour]

ta
rif

f

Fig. 4: Resulting optimal solution of a district composed of 1000
buildings for a 24 hour horizon and a sampling period of 15 minutes.
The optimal power and temperature profiles of 10 randomly chosen
buildings are provided in the second and third sub-figures. The first
sub-figure shows the global power consumption of the district and that
the global power limit is respected. Finally in the fourth sub-figure
the dual variable having the nice property to act as an additional
(virtual) tariff on the consumed energy is plotted.
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Fig. 5: Convergence speed in terms of number of iterations for
different numbers of subsystems Ng aggregated in one cutting plane
model. The fact that there is no visible difference for different
Ng means that choosing a fully aggregated bundle method for this
specific problem is always the best choice since in this case the time
to solve the master problem tM is shortest.



nB niter(99.5 %) niter(99.75 %) tM (s) Nctr

1 41 49 0.0023 20
2 20 22 0.0037 40
4 18 22 0.0108 80
6 22 22 0.0150 120
8 27 27 0.0168 160
10 23 29 0.0233 200
30 23 30 0.1459 600

TABLE I: Convergence speed for different values of cuts nB kept
in the memory of each bundle. Ng is fixed to 50. It turns out that
as long as nB > 1 there is no significant difference in the results.
Consequently for this specific problem choosing a small value for
nB is the best choice, since the time to solve the master problem tM
is smallest in this case.

problems has been developed. The core of the proposed
scheme is the solution strategy of the master problem which
relies on bundle methods.

The central contribution of this paper is a detailed discussion
of the resulting efficiency of the scheme with respect to the
parametrization of the bundle method. More precisely, the
impact of using an aggregated, a partially aggregated or a
disaggregated bundle version on the total convergence time of
the scheme has been discussed.

In this context it has been shown that the efficiency of a
DMPC framework should not only be assessed in terms of
necessary iterations as it can often be observed in the literature,
but in terms of total computation time taking also into account
the communication infrastructure and the computation time at
each iteration.
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