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Abstract. In this paper, the relation between asymptotic controllability and feed-
back stabilizability of general nonlinear systems is investigated. It is proved that
asymptotic controllability implies for any strictly positive sampling period of a sta-
bilizing feedback in a continuous-discrete time framework. The proof uses receding
horizon considerations to construct a stabilizing feedback.

1 Introduction

For linear systems, it is well known that a system is (globally) asymptoti-
cally stabilizable by means of a state feedback if and only if it is (globally)
asymptotically null controllable. Furthermore, the stabilizing feedback may
be chosen smooth1. Does an analogous property exist for general nonlinear
systems of the form (1) remains an open question in the nonlinear control
theory framework.

ẋ = f(x, u) (1)

Brockett et al. [1] gave the following three necessary conditions for the exis-
tence of a stabilizing C1 feedback:

Theorem 1 (Brockett et al. [1]). If f is C1 and the feedback u ∈ C1 is
such that u(0) = 0 and the origin is asymptotically stable for ẋ = f(x, u(x)),
then:
1. there is no uncontrollable modes of the linearized system associated with

eigenvalues with nonnegative real parts
2. the origin is attractive
3. f maps every neighbourhood of the origin onto a neighbourhood of the

origin

Applied on a linear system ẋ = Ax+Bu, it simply gives that [A : B] has to be
full rank which follows from the asymptotic null controllability assumption.
1 infinitely differentiable
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When only continuous feedbacks are considered, the first condition is no more
necessary as shown by Kawski [6]. However, the third condition remains even
if f is only continuous [14]. This last condition, often quoted in the literature
as the Brockett’s condition, shows that there is no hope to obtain a general
relation between asymptotic controllability and feedback stabilizability if one
imposes regularity assumptions on the feedback.

Remained to explore the field of discontinuous feedback. Indeed, discontin-
uous feedbacks arise often in many areas of control theory as well as practice.
Nevertheless, it immediately yields to the difficulty: how should be defined
the solution of (1) when u(x) is discontinuous ? The best known theoretical
tool for this is the Filippov theory [4]. Unfortunately, it was shown in [10] that
it also yields to the Brockett’s necessary condition. Moreover, it is proved in
[3] that for affine in controls systems, the existence of a stabilizing feedback
in the Filippov sense implies the existence of a non stationary continuous
feedback.

In a recent paper, Clarke et al. took a slightly different approach [2]. In-
stead of considering the continuous time solution of system (1), which may
even not be defined if no regularity is assumed, the solution used is the one
of a continuous-discrete time system. With this approach, it can be estab-
lished that asymptotic controllability implies a particular type of continuous-
discrete time feedback stabilizability (see Th. 2). This mainly follows from
a theorem established in [9] and generalized in [11], that argues, roughly
speaking, that for asymptotically controllable systems, there always exists a
continuous Lyapunov function V that can be decreased by means of a control.
Using a regularization theorem and Rademacher’s theorem, it is proved that
one can find a feedback that makes decrease a sufficiently precise lipschitz
local approximation of V so that V also decreases.

In this paper, the assumptions and the continuous-discrete time solutions
considered are identical to Clarke’s work [2]. With these assumptions, the
asymptotic controllability is proved to imply the existence of a feedback that
asymptotically stabilizes the system in continuous-discrete time, whatever
the sampling period T > 0. The present result has the advantage of ensuring
the asymptotic stability of the continuous-discrete time closed loop system,
when only practical stability was obtained with Clarke’s result. On the other
hand, it is not possible (at least simply) to make the sampling period tend
to the zero in order to get generalized solutions of the closed loop equation
ẋ = f(x, k(x)) (see [13]).

The paper is organized as follows. After some preliminary definitions, the
main result (that is Th. 3), is presented in Sec. 2. The last section is dedicated
to its proof.
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2 Problem statement and main result

2.1 Preliminary definitions

The system considered in this paper is of the form (1) where f is assumed to
be continuous and locally lipschitz in x uniformly w.r.t. to u. This assumption
ensures the existence and the uniqueness, for any essentially bounded control
u and initial condition x0, of a trajectory x(.;x0, u), solution of the initial
valued problem {ẋ = f(x, u(t)), x(0) = x0}. This will not be practically
restrictive since only uniformly bounded controls will be considered in the
following. The system is assumed to be globally asymptotically controllable,
that is [12]:

Definition 1 (global asymptotic controlability). System (1) is said to
be globally asymptotically controllable if there is a measurable function u :
Rn × R+ → Rp with for all x ∈ Rn, u(x, .) ∈ LRp

∞ such that:

1. (attractivity) ∀x0 ∈ Rn, limt→∞ x(t;x0, u(x0, .)) = 0
2. (stability) ∀R > 0, ∃r(R) > 0 such that ∀x0 ∈ B(r(R)), one has

x(t;x0, u(x0, .)) ∈ B(R) for all t ≥ 0.

where LRp

∞ denotes the set of functions f : R → Rp, essentially bounded on
every compact set [a, b]

Furthermore, to rule out the case when an infinite control is required to bring
the state of the system to the origin, one assumes that:

Assumption 1. There exists a neighbourhood of the origin V(0) ⊂ Rn and
a compact set U ⊂ Rp such that for all x0 ∈ V(0), there exists a function u
satisfying the above definition such that u(x0, t) ∈

a.a. t
U for almost all t.

Some definitions that enables a proper definition of (a) solution(s) to the
closed loop system are next given. Let a partition of R+ be defined by:

Definition 2 (partition). Every series π = (ti)i∈N of positive real numbers
such that t0 = 0, ∀i, j ∈ N, ti < tj and limi→∞ ti = +∞ will be called a
partition. Furthermore, let (when it makes sense):

• d̄(π) := supi∈N(ti+1 − ti) be the upper diameter of π,
• d(π) := infi∈N(ti+1 − ti) be the lower diameter of π.

With the above definition, one can define the notion of π-trajectory that can
be seen as a continuous-discrete time solution of (1). This is an intermediate
between the classical continuous time approach ẋ = f(x, k(x)) and the Euler
integration giving ẋ = f(x(ti), k(x(ti), ti)).

Definition 3 (π-trajectory). The π-trajectory xπ(.;x0, k) of system (1),
associated with a partition π = (ti)i∈N, an initial condition x0 = x(t0) and a
control strategy k, is the time function obtained by solving successively for
every i ∈ N:

ẋ = f(x, k(x(ti), t)) t ∈ [0, ti+1 − ti] i = 0, 1, 2, . . . (2)

using as initial value the endpoint of the solution of the preceding interval.
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Eq. (2) reminds receding horizon. Indeed receding horizon consists in finding,
at sampling time ti, an open-loop control t → k(x(ti), t) defined for t ∈
[0, T ] (with T ≥ δ̄(π) possibly infinite) and in applying it during the interval
[ti, ti+1]. Repeating this scheme gives a control depending upon x(ti) and the
time t ∈ [0, ti+1 − ti] as in (2). These definitions are a slight generalization
of some definitions originally introduced by Clarke et al. in [2] where u was
independent of the time.

2.2 Existing result and main contribution

With the above definitions, the result obtained in [2] is the following:

Theorem 2 (Clarke et al. [2]). Assume that system (1) is globally asymp-
totically controllable and satisfies Ass. 1. Then, there exists a measurable
function k : Rn → Rp such that for every real numbers R > r > 0, there
exists M(R) > 0, T (R, r) and δ(R, r) > 0 such that for every partition π
such that d̄(π) < δ(R, r), one has:

1. (bounded trajectory) ∀x0 ∈ B(R), ∀t ≥ 0, xπ(t;x0, k) ∈ B(M(R)).
2. (attractivity) ∀x0 ∈ B(R), ∀t ≥ T (R, r), xπ(t;x0, k) ∈ B(r).
3. (stability) limR→0 M(R) = 0.

The above result underlines a relation between global asymptotic stability
and a kind of stability, called s-stability (“s” stands for sampling) in the
original paper [2]. This concept of stabilisation enables the generalization of
the concept of stabilisation well known in the continuous case. Indeed, if one
takes an initial condition x0 and a sequence of partitions πl such that d̄(πl) →
0 as l → ∞, the functions xπl

(.;x0, k) remain in a bounded set. Because
f(x, k(x)) is also bounded on this set, these functions are equicontinuous
hence, using Arzela-Ascoli’s Theorem, there is a subsequence that converges
to a function that we denote x(.;x0, k). Any limit x(.;x0, k) of such convergent
subsequences can be considered as a generalized solution of the closed loop
system ẋ = f(x, k(x)). These generalized solutions always exists though it
may not be unique and the system is globally asymptotically stable with
respect to that definition of solution.

Practically, these solutions are impossible calculate and one may prefer to
keep the continuous-discrete time scheme, that is to fix a partition. In that
case, the obtained stability is clearly not asymptotic since the upper diameter
d̄(π) of the partition may have to tend to zero with δ(R, r) as R tends to zero.
However, the π-trajectory of the system is guarantied to remain in the ball
B(r) after some time T (R, r), which leads to practical stability of the closed
loop system. The aim of this paper is to answer this problem:

Theorem 3. Assume that system (1) is asymptotically controllable and sat-
isfies Ass. 1, then, for all δ > 0, there exists a measurable function k :
Rn × R+ → Rp such that:
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1. ∀x ∈ Rn, k(x, .) ∈ LRp

∞ ,
2. ∀R > r > 0, there exists M(R) > 0 and T (R, r) > 0 such that for any

partition π such that d(π) ≥ δ, one has:
(a) (bounded trajectory) ∀x0 ∈ B(R),∀t ≥ 0, xπ(t;x0,K) ∈ B(M(R)),
(b) (attractivity) ∀x0 ∈ B(R), ∀t ≥ T (R, r), xπ(t;x0,K) ∈ B(r),
(c) (stability) limR→0 M(R) = 0.

Clearly, this theorem has the advantage of insuring the asymptotic stabil-
ity of the closed-loop system and not only a practical stability, since it is
not necessary to sample infinitely fast as the state comes to the origin. On
the other hand and like every scheme based on sampling, fixing a priori the
sampling schedule may induce problems due to blow-up in finite time. The
proposed feedback in its present form is not an exception to this rule. Never-
theless, this can easily be cleared up by making the sampling period δ depend
dynamically upon the current state. This point won’t be detailed here.

Similarly as in [2], Th. 3 leads to the following definition of global asymp-
totic cd -stability (where “cd” stands for continuous-discrete):
Definition 4. An asymptotically controllable system satisfying Ass. 1 that
admits for all δ > 0 a function k as in Th. 3 will be said globally asymptotically
cd-stabilizable

3 Proof of Theorem 3

The aim of this section is to prove that under Ass. 1 and an asymptotic
controllability assumption, one can construct a feedback k : Rn × R+ that
asymptotically cd-stabilizes system (1). Let us first begin with the following
definition that makes the reading of the sequel easier.
Definition 5 (bounded control strategy). Let denote by bounded con-
trol strategy any measurable function u : Rn × R+ → Rp such that for all
R > r > 0, there exists M(R) > 0 and T (R, r) > 0 satisfying:
1. (stability) limR→0 M(R) = 0,
2. (bounded trajectory) ∀x ∈ B(R), ∀t ≥ 0, x(t;x, u(x, .)) ∈ B(M(R)),
3. (attractivity) ∀x ∈ B(R), ∀t ≥ T (R, r), x(t;x, u(x, .)) ∈ B(r).
4. (bounded control) For all compact set X ⊂ Rn and x ∈ X , u(x, .) belongs

almost everywhere to a compact subset U ⊂ Rp.

It should be emphasized that this notion concerns the open-loop trajectory
contrary to Def. 4 of asymptotic stability where π-trajectories, that is closed-
loop trajectories, are considered. This difference is significant since, as un-
derlined in [7], the existence of such open-loop controls is far from implying
directly the asymptotic cd-stability. The proof of Th. 3 is based on receding
horizon considerations and splits up into the following main parts that make
up the three next subsections.
1. Firstly, under Ass. 1 and asymptotic controllability assumption, system

(1) is proved to admit a bounded control strategy that enables the defi-
nition of a cost function like in the infinite horizon control framework.
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2. Then, it will be established that, for every δ > 0, there is a feedback law
that decreases this cost function for every partition π such that d(π) ≥ δ.

3. Finally, it will be proved that the above feedback globally asymptotically
cd-stabilises system (1).

3.1 Definition of a cost function

The aim of this section is to introduce the following intermediate lemma,
which proof is given in Appendix A.

Lemma 1. If system (1) is asymptotically controllable and satisfies Ass. 1,
then there exists a bounded control strategy v, a function G : R+ → R+ of
class C1 and, for all R > 0, a decreasing function ΛR : R+ → R+ such that:

1. G and its derivative g are of class K,2
2. For every x ∈ Rn, the below integral W (x, v(x, .)) converges

W (x, v(x, .)) :=
∫ +∞

0

G (‖x(τ ;x, v(x, .))‖) dτ (3)

3. R1 ≥ R2 ≥ 0 ⇒ ΛR1(0) ≥ ΛR2(0),
4. limR→0 ΛR(0) = 0,
5. ∀x ∈ B(R), ∀t ≥ 0, ‖x(t;x, v(x, .))‖ ≤ ΛR(t),
6.
∫ +∞
0

G(ΛR(τ))dτ converges.

Clearly, items 5 and 6 imply item 2. W (x, v(x, .)) is the cost associated
with the initial state x and the open-loop control v(x, .). It takes the receding
horizon classical form when no weighting is put on the control.

The proof of this lemma, detailed in Appendix A, splits up into in the
following points:

1. In a first step, it is proved that system (1) admits a bounded control
strategy v as soon as it is asymptotically controllable.

2. This enables to define, for all R > 0, a “gauge” function ΛR, fulfilling
items 3, 4 and 5 of Lem. 1.

3. Fixing R̄ = R and using Massera’s lemma [8, Lem. 12], gives a function
G fulfilling item 1 of Lem. 1 and such that

∫ +∞
0

G(ΛR̄(τ))dτ converges.
4. Verifying that

∫ +∞
0

G(ΛR(τ))dτ converges for every R ends the proof.

3.2 Formulation of the feedback

Let C > 0 be a real constant and B( C
2k ), k ∈ Z, be concentric balls defining a

subdivision of Rn. It follows from the asymptotic controllability assumption
and from Lem. 1, that there exists for every k ∈ Z, a compact set U C

2k
such

that for all x ∈ B( C
2k ), v(x, t) belongs almost everywhere to U C

2k
. For all

x ∈ Rn\{0}, let us define:
2 following Hahn [5], any continuous strictly increasing functions f : R+ → R+

such that f(0) = 0 will be said of class K
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• nx ∈ Z be the larger relative integer n such that x ∈ B( C
2n ). According

to Lem. 1 and for all x ∈ Rn, one has:

∀t ≥ 0, ‖x(t;x, v(x, .))‖ ≤ Λ C
2nx

(t)

with in addition, v(x, t) ∈ U C
2nx

for almost every t ≥ 0.
• n̄x ∈ Z be the larger relative integer n such that for which there exists

an open-loop control u : R+ → Rp such that:{
u(t) ∈ U C

2n̄x
almost everywhere

∀t ≥ 0, ‖x(t;x, u)‖ ≤ Λ C
2n̄x

(t) (4)

According to the previous item, it is clear that:

n̄x ≥ nx (5)

Note also that along every open-loop trajectory x(.;x, u), one has:

n̄x(t;x,u) ≥ n̄x ∀t ≥ 0 (6)

Indeed, u(. + t) is an open-loop control belonging to U C
2n̄x

. Hence, using
(4) and the decrease of Λ C

2n̄x
, one has for every t′ ≥ 0:

‖x(t′;x(t;x, u), u(.+t))‖=‖x(t′+t;x, u)‖ ≤ Λ C
2n̄x

(t′+t) ≤ Λ C
2n̄x

(t′)

• Ux ⊂ LRp

∞ denote the set3 of open-loop control u fulfilling conditions (4).

Finally, let W (x) be the minimum cost associated with x4:

W (x) := inf {W (x, u); u ∈ Ux} (7)

Lemma 2. For all δ > 0, there is a definite function εδ(x) (that is εδ(x) =
0 ⇔ x = 0), such that every feedback of the form (8) cd-stabilise (1).

K(x, t) := u(t) with u ∈ Vx := {u ∈ Ux; W (x, u) ≤ W (x) + εδ(x)} (8)

The proof of this last lemma ends the proof of Th. 3.

3.3 Asymptotic cd-stability of the closed-loop system

First of all, note that the definition of Ux and (6) give:

∀t ≥ 0, n̄xπ(t;x,K) ≥ n̄x along the π-trajectories (9)

Items 1, 2(a) and 2(c) of Th. 3 are quite easy to verify:

1. By (8), for all x ∈ Rn, one has K(x, .) = u(.) ∈ Vx ⊂ Ux ⊂ LRp

∞ .

3 by definition of n̄x, the set Ux can not be empty.
4 it does not necessary exist a control u ∈ LRp

∞ such that W (x, u) = W (x).
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2. For every partition π = (ti)i∈N, the π-trajectory of (1) with feedback (8)
satisfies:
(a) for all R > 0, all x ∈ B(R) and all t ≥ 0 (since Λ C

2n̄x
is decreasing):

xπ(t;x, K) ∈
(9)
B
(

sup
t∈R+

Λ C
2n̄x

(t)
)
⊂ B

(
Λ C

2n̄x
(0)
)

⊂
lemma 1.3
and (5)

B
(
Λ C

2nx
(0)
)

Hence, one has xπ(t;x, K) ∈ B(Λ C
2nR

(0)) with nR := infx∈B(R) nx.
(c) Lemma 1.4 gives: limR→0 Λ C

2nR
(0) = 0

In order to conclude, it only remains to prove item 2(b) of Th. 3. Let
R > r > 0 be two real numbers, x ∈ D(r, R)5 be the initial state of system
(1) and xπ(ti;x,K) the state of du system (1) at time ti of the partition, when
the feedback K defined by (8) is applied. The aim is to prove that there exists
a time T (r, R) such that for every partition π of lower diameter d(π) ≥ δ and
every x ∈ D(r, R), one has xπ(t;x, K) ∈ B(r), for all t ≥ T (r, R). This proof
follows the three following steps:

1. First of all, it will be proved that for all R > r > 0, there is an integer
N1(r, R) such that, for all x ∈ Rn, for every partition π, such that d(π) ≥
δ, and for all instant ti of it such that xπ(ti;x, K) ∈ D(r, R), one has
n̄xπ(ti+N1(r,R);x,K) > n̄xπ(ti;x,K). In other words, n̄xπ(ti;x,K) increments of
one, at worst, every N1(r, R) sampling period. This directly follows from
the choice of εδ that will be done in the following and that will insure the
decrease of the cost function W at each sampling time ti. This will imply
the decrease of ‖xπ(ti;x,K)‖ and hence, after some steps, the growth of
n̄xπ(ti;x,K).

2. It will follow quite easily from the previous item that for all R > r > 0,
there exists an integer N(r, R) such that for every partition of lower
diameter greater than δ and every x ∈ D(r, R), one has xπ(t;x,K) ∈
B(r), for all t ≥ tN(r,R). This last point is almost the objective of the
present section with this slight difference that N(r, R) does not depend
upon the partition contrary to tN(r,R).

3. Finally, the existence of a time T (r, R), independent of the partitions
will be proved. This last point follows from the choice of the open-loop
controls maid such that the corresponding trajectories remain below the
gauge function ΛR(t). If for some i, ti+1 − ti happens to be to large, the
trajectory will naturally reach the ball B(r) “in open-loop”. Hence, it can
be deduced that there is a time T (r, R) after which, even if tN(r,R) ≥
T (r, R), the trajectory will reach the ball B(r).

Existence of N1(r, R) Let δ > 0 be a fixed real number and Γ denote
the primitive of G vanishing at the origin. From (9) and for all partition π,
one has along the trajectories: n̄xπ(ti+1;x,K) ≥ n̄xπ(ti;x,K). For the ease of the

5 where D(r, R) denotes the closed disk of lower radius r and upper radius R
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reader, let xi := xπ(ti;x, K) denote the state of system (1) at time ti. At time
ti+1, the state xi+1 of the system is given by integrating system (1) between
ti and ti+1 with control K(xi, t) = ui(t) as defined by (8). Hence:

W (xi) ≤ W (xi, ui) ≤ W (xi) + εδ(xi)

Now, if n̄xi+1 = n̄xi
, ui(.− (ti+1 − ti)) also belongs to Uxi+1 , giving:

W (xi+1) ≤ W (xi+1, ui(.− (ti+1 − ti)))

≤ W (xi, ui)−
∫ ti+1−ti

0

G(‖x(τ ;xi, ui)‖)dτ

≤ W (xi) + εδ(xi)−
∫ ti+1−ti

0

G(‖x(τ ;xi, ui)‖)dτ (10)

Using ti+1 − ti ≥ δ and defining6:

∀ρ > 0, S(ρ) := max( sup
x∈B(Λρ(0))

u∈Uρ

‖f(x, u)‖ , 1) (11)

it follows that7:

∫ ti+1−ti

0

G(‖x(τ ;xi, ui)‖)dτ ≥
∫ min

 ‖xi‖
S

(
C

2
n̄xi

) ,δ


0

G

(
‖xi‖ − S

(
C

2n̄xi

)
τ

)
dτ

≥ 1
S( C

2n̄xi
)

[
Γ (‖xi‖)− Γ

(
‖xi‖ −min

(
‖xi‖ , S

(
C

2n̄xi

)
δ

))]
(12)

Combining inequalities (10) and (12) gives:

W (xi+1)−W (xi) ≤ εδ(xi)−
Γ (‖xi‖)−Γ

(
‖xi‖−min

(
‖xi‖,S

(
C

2
n̄xi

)
δ
))

S( C

2
n̄xi

)

Hence, the aim here consist in doing an appropriate choice of εδ in order to
force the right member of this last inequality to remain strictly negative. Let:

εδ(x) := min

(
1

S( C
2n̄x )

,
δ

‖x‖

)
Γ (‖x‖)

2
(13)

With such a choice:

• if ‖xi‖ ≤ S( C
2n̄xi

)δ, one has:

W (xi+1)−W (xi) ≤ εδ(xi)−
1

S( C
2n̄xi

)
Γ (‖xi‖) ≤

(13)
−εδ(xi) (14)

6 S( C
2n̄x ) is an upper bound to the time derivative of x(.; x, u) when u ∈ Ux

7 there is a “min” function in this expression since τ → ‖xi‖ − S( C

2
n̄xi

)τ vanishes

before τ = δ if ‖xi‖
S( C

2
n̄xi

)
≤ δ
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• if ‖xi‖ > S( C
2n̄xi

)δ, one has using (13):

W (xi+1)−W (xi) ≤ δΓ (‖xi‖)
2‖xi‖ −

Γ (‖xi‖)−Γ
(
‖xi‖−δS

(
C

2
n̄xi

))
S
(

C

2
n̄xi

)
≤ −εδ(xi)− 1

S
(

C

2
n̄xi

)[(1−
δS( C

2
n̄xi

)

‖xi‖

)
Γ (‖xi‖)−Γ

(
‖xi‖−δS( C

2
n̄xi

)
)]

Since 0 <
δS( C

2
n̄xi

)

‖xi‖ < 1 and, G being increasing, its primitive Γ is convex,
the second term of this inequality is negative or null. Hence:

W (xi+1)−W (xi) ≤ −εδ(xi) (15)

In both cases (14) and (15), one has W (xi+1)−W (xi) ≤ −εδ(xi). Moreover,
defining for any R > r > 0, εδ(r, R) := infx∈D(r,R) εδ(x), it can be proved that
εδ(r, R) > 0. Indeed, by (11), one necessarily has S( C

2n̄x ) ≤ S( C
2nx ) ≤ S( C

2nR
),

with nR := infx∈B(R) nx. Therefore, with the definition of εδ, it follows:

εδ(x) = min

(
1

S( C
2n̄x )

,
δ

‖x‖

)
Γ (‖x‖)

2
≥ min

(
1

S
(

C
2nR

) , δ

‖x‖

)
Γ (‖x‖)

2
(16)

The right member of inequality (16) is clearly continuous with respect to x
and hence one effectively has εδ(r, R) > 0, for all R ≥ r > 0.

Remark 1. δ can be chosen as small as needed, however, it can not taken
null. Indeed, it would be then impossible to insure that εδ(r, R) > 0 which
precisely gives the convergence of the state to the origin.

With the two points below illustrated on Fig. 1, one can define N1(r, R) :

• According to Lem. 1, every trajectory starting in the ball B(R) remains
in the ball B(ΛR(t)) for all t ≥ 0. In particular, one has:

x ∈ D(r, R) ⇒ W (x) ≤
∫ +∞

0

G(ΛR(τ))dτ (17)

• According to (11), the time derivative of the trajectory can be bounded on
every compact set. Hence if x ∈ D(r, R), the cost W (x) will necessarily
be larger than a minimum cost Wmin(r) corresponding to the fastest
decrease of the state:

W (x) < Wmin(r) ⇒ x ∈ B(r) (18)

Consequently, choosing N1(r, R) as the smallest integer such that:

N1(r, R) >
1

ε(r, R)

(∫ +∞

0

G(ΛR(τ))dτ −Wmin(r)
)

(19)

For all x ∈ D(r, R), one has the following relation that ends the proof of the
first points described above:

n̄xπ(ti+N1(r,R);x,K) > n̄xπ(ti;x,K) (20)
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G(R)

G(r)

G(‖x‖)

Wmin(r)

G(ΛR(.))

t

G(‖x(.; x, v(x, .))‖) Fig. 1. Upper and lower
bound of W (x) for x ∈
D(r, R)

Existence de N(r, R) The existence of N directly follows from the one
of N1. Indeed, let m(r) := inf{m ∈ Z; B(M( C

2m )) ⊂ B(r)}. Clearly, m(r)
is the smallest integer such that, for all x ∈ B( C

2m(r) ), the π-trajectory
xπ(.;x,K) remains in B(r). Using this and since, for any x ∈ D(r, R),
one has nx ≥ nR, one can easily verify that, choosing for all R > r > 0,
N(r, R) := N1( C

2m(r) , R)(m(r) − nR) guarantees that, for any partition π of
lower diameter d(π) ≥ δ, any x ∈ D(r, R) and any i ≥ N(r, R), one has
n̄xπ(ti;x,K) < m(r). Therefore, for any i ≥ N(r, R), xπ(ti;x,K) ∈ B( C

m(r) ),
giving for all t ≥ tN(r,R), xπ(t;x, K) ∈ B(M( C

m(r) )) ⊂ B(r). This is exactly
our second objective.

Existence of T (r, R) It only remains to prove that T (r, R) can be cho-
sen independently of the partition to conclude the proof of Th. 3. First of
all, recall that, in the continuous-discrete time scheme used here (see Def.
3), the system evolves in open-loop between two sampling instants. Accord-
ing to (8), the control u is chosen at each sampling time (ti)i∈[0,N(r,R)] in
the set Vxπ(ti;x,K) ⊂ Uxπ(ti;x,K). According to (6), u ∈ Ux, and hence us-
ing (4), one has: x(t;x, u) ∈ B(ΛR(t)). Consequently, if the time between
a sampling instant ti and the next one ti+1 becomes too large, the trajec-
tory will meet in open-loop the ball B(m(r)) in a time less than Tmax(r, R).
Since Tmax(r, R) depends only upon r and R one can conclude by taking
T (r, R) := N(r, R)Tmax(r, R). That way, for any partition π of lower diameter
d(π) ≥ δ and for any x ∈ D(r, R), one has: ∀t ≥ T (r, R), xπ(t;x,K) ∈ B(r).
This last point ends the proof of Th. 3.

A Proof of Lemma 1

Recall that the following proof is made up with four main points detailed in
section 3.1.

Existence of v According to Th. 2, there exists a feedback law κ such that,
for any R > r > 0, there is M(R) > 0, T (R, r) > 0, δ(R, r) and a partition
π(R, r) of upper diameter d̄(π) ≤ δ(R, r), so that:
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• (bounded trajectory) ∀x ∈ B(R), ∀t ≥ 0, xπ(R,r)(t;x, κ) ∈ B(M(R)),
• (attractivity) ∀x ∈ B(R), ∀t ≥ T (R, r), xπ(R,r)(t;x, κ) ∈ B(r),
• (stability) limR→0 M(R) = 0.

Moreover, for any compact X of Rn and all x ∈ X , κ(xπ(R,r)(t;x, κ)) is in a
compact subset Uρ(X ) of Rp depending only upon X [2].

In order to simplify the notations, let πx := π(‖x‖, ‖x‖2 ) be a partition
such that d̄(πx) ≤ δ(‖x‖, ‖x‖2 ) and let the control strategy w be defined by:

w(x, t) := κ (xπx
(ti;x, κ)) t ∈ [ti, ti+1] (21)

For all x ∈ Rn, one has x(t;x, w(x, .)) = xπx
(t;x, κ) for all t ≥ 0. The open-

loop trajectory8 x(t;x,w(x, .)) obtained by applying the control law w is
clearly identical to the π-trajectory xπx(t;x, κ). Hence, the system will meet
the ball B(‖x‖2 ) in a time less than T (‖x‖, ‖x‖2 ). In order to obtain a bounded
control strategy in the sense of Def. 5, it only remains to prove the attractivity
of the origin. This can be simply obtained by applying repetitively the control
strategy w. For all x ∈ Rn, let:

x0 := x xk+1 := x (tk(‖x‖);xk, w(xk, .))

with: tk(‖x‖) := T (‖x‖
2k , ‖x‖

2k+1 ) (22)

tk(‖x‖) is the time9 needed to go from a state of norm ‖x‖
2k to a state of norm

less than ‖x‖
2k+1 . For all t ≥ 0 and R > 0, let kt

R and T t
R be defined by:

kt
R :=


0 if t ≤ t0(R)
the unique integer k such that:
t ∈ ]

∑k
j=0 tj(R),

∑k+1
j=0 tj(R)]

if t > t0(R) (23)

T t
R :=

{
0 if t ≤ t0(R)∑kt

R
j=0 tj(R) if t > t0(R)

(24)

and v be given by:

v(x, t) :=

{
w(x, t) for t ≤ t0(‖x‖)
w
(
x
(
T t
‖x‖;xkt

‖x‖
, v(xkt

‖x‖
, .)
)

, t− T t
‖x‖

)
for t > t0(‖x‖)

(25)

For all x ∈ Rn, the open-loop control v(x, .) gives the generic trajectory
profile x(.;x, v(x, .)) depicted on Fig. 2.

It is then easy to verify that v is a bounded control strategy in the sense
of Def. 5. This gives the first point of the proof: for all R > r > 0, there is
Mv(R) := M(R) > 0 and Tv(R, r) so that:

8 w(x, .) is an open-loop control strategy independent of any partition, though it
is deduced from a partition πx.

9 tk(‖x‖) has nothing to do with any partition
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‖x‖

‖x‖
2

‖x‖
4

‖x‖
8

M(‖x‖)

M(
‖x‖
2 )

M(
‖x‖
4 )

t

‖x(.; x, v(x, .))‖
‖x0‖

‖x1‖

‖x2‖

t0(‖x‖)
1∑

j=0

tj(‖x‖)
2∑

j=0

tj(‖x‖)

Fig. 2. Generic state
trajectory x(.; x, v(x, .))

1. lim
R→0

Mv(R) = lim
R→0

M(R) = 0,

2. ∀x ∈ B(R), ∀t ≥ 0, x(t;x, v(x, .)) ∈ B(Mv(R)) = B(M(R)),
3. Let nR be the smallest integer such that M( R

2nR
) ≤ r and, for

all x ∈ B(R)\B( R
2nR

), let nx be the smallest integer10 such that
M( ‖x‖2nx ) ≤ r. Then, for all t ≥

∑nx−1
j=0 tj(‖x‖), one has x(t;x, v(x, .)) ∈

B(M( ‖x‖2nx )) ⊂ B(r). Noticing that every trajectory with initial condition
in B( R

2nR
) remains in B(r), it becomes clear that it is sufficient to bound∑nx−1

j=0 tj(‖x‖) for x ∈ B(R)\B( R
2nR

) in order to conclude:

nx−1∑
j=0

tj(‖x‖) =
(22)

nx−1∑
j=0

T

(
‖x‖
2j

,
‖x‖
2j+1

)
≤ (nx − 1)T

(
R,

R

2nR+1

)

≤ (nR − 1) T

(
R,

R

2nR+1

)
=: Tv(r, R) (26)

Hence, for all x ∈ B(R) and t ≥ Tv(r, R), one has x(t;x, v(x, .)) ∈ B(r)11

4. For any compact set X ⊂ Rn, the open-loop control v(x, .) satisfying
the two previous points is in a compact subset U ⊂ Rp almost every-
where since κ also satisfies this property (see [2] for further details on the
construction of κ).

Definition of ΛR Figure 3 illustrates the construction that follows. Let
R̄ > 0, be a fixed radius. Let λR̄ : R+ → R+ be the above defined function:

λR̄(t) :=

{
Mv(R̄) if t ∈

[
0, Tv

(
R̄, R̄

2

)]
Mv

(
R̄
2k

)
if t ∈

]
Tv

(
R̄, R̄

2k

)
, Tv

(
R̄, R̄

2k+1

)] (27)

10 note that x ∈ B(R) implies that nx ≤ nR.
11 Note that Tv(r, R) depends upon r through nR
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R

R̄

R̄
2

ΛR(t)

λR̄(t− Tv(R, R̄
2 ))

Mv(R)

‖x(.; x, v(x, .))‖

‖x(Tkx ; x, v(x, .))‖

t

Tkx

Tv(R, R̄)

Tv(R, R̄
2 )

Tv(R̄, R̄
2 )

Tv(R̄, R̄
4 )

‖x‖

Fig. 3. Illustration of
function ΛR

Since v is a bounded control strategy, for all x ∈ B(R̄) and t ≥ 0, one has
x(t;x, v(x, .)) ∈ B(λR̄(t)). Function ΛR : R+ → R+ defined below extends
this result for all R > 0 and x ∈ B(R):

ΛR(t) :=

Mv(R) if R > R̄ and t < Tv(R, R̄
2 )

λR̄(t− Tv(R, R̄
2 )) if R > R̄ and t ≥ Tv(R, R̄

2 )
min (Mv(R), λR̄(t)) if R ≤ R̄

For all R ≤ R̄ and x ∈ B(R), one knows that for all t ≥ 0, x(t;x, v(x, .)) ∈
B(λR̄(t)). By construction of v, one also knows that x(t;x, v(x, .)) ∈ Mv(R).
These two points give that for all R ≤ R̄, all x ∈ B(R) and all t ≥ 0, one has
x(t;x, v(x, .)) ∈ B(ΛR(t)).

For all R > R̄ and x ∈ D(R, R̄), there is an integer kx such that
Tkx :=

∑kx

j=0 tj(‖x‖) ∈ [Tv(R, R̄), Tv(R, R̄
2 )] and x(Tkx ;x, v(x, .)) ∈ B(R̄)

(with tk(‖x‖) defined by (22)). Now, by definition of v, one has for all t ≥ 0:

‖x (t;x (Tkx
;x, v(x, .)) , v (x(Tkx

;x, v(x, .)), .))‖=‖x (t + Tkx
;x, v(x, .))‖

hence, for all t ≥ Tv(R, R̄
2 ), one has using (27) and the decrease of λR̄:

‖x (t;x, v(x, .))‖ ≤ λR̄(t− Tkx
) ≤ λR̄

(
t− Tv

(
R,

R̄

2

))
(28)

Using (28) together with the fact that for all x ∈ B(R) and all t ≥ 0,
x(t;x, v(x, .)) ∈ B(Mv(R)), one gets item 5 of Lem. 1, namely, for every
R > 0, every x ∈ B(R) and every t ≥ 0, one has x(t;x, v(x, .)) ∈ B(ΛR(t)).

The decrease of function ΛR and item 3 of Lem. 1 are clear. Item 4 directly
follows from the construction of ΛR: ΛR(0) ≤ Mv(R) with limR→0 Mv(R) =
0.

Obtaining G λR̄ is a strictly positive function such that for every t ≥ 0,
limt→∞ λR̄(t) = 0 (recall limR→0 M(R) = 0). Using Massera’s lemma [8,
Lem. 12], there is a function G of class K with derivative g also of class K
such that

∫ +∞
0

G (λR̄(τ)) dτ converges.
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Convergence of
∫∞
0

G(ΛR(τ ))dτ In order to conclude, it only remains
to verify that

∫∞
0

G(ΛR(τ))dτ is convergent for all R > 0. This follows quite
easily from the convergence of

∫ +∞
0

G (λR̄(τ)) dτ . For R ≤ R̄, ΛR(t) = λR̄(t),
and hence

∫ +∞
0

G (ΛR(τ)) dτ is convergent. For R > R̄, one has:∫ +∞

0

G (ΛR(τ)) dτ =
∫ Tv(R, R̄

2 )

0

G (ΛR(τ)) dτ +
∫ +∞

Tv(R, R̄
2 )

G (ΛR(τ)) dτ

=
∫ Tv(R, R̄

2 )

0

G (ΛR(τ)) dτ +
∫ +∞

0

G (λR̄(τ)) dτ∫∞
0

G(ΛR(τ))dτ is also convergent. This ends the proof of Lem. 1.
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